
radish Documentation
Release 0.17.1

Timo Furrer

Mar 20, 2024

CONTENTS

1 Introduction 3
1.1 Why yet another python BDD tool? . 3

2 Installation 5
2.1 System Wide Installation . 5
2.2 virtualenv Installation . 5
2.3 Install from source . 5

3 Quickstart 7
3.1 Writing the first feature file . 7
3.2 Implementing Steps . 7
3.3 Implementation Terrain . 8
3.4 Run the feature file . 9
3.5 Run state result . 9

4 Tutorial 11
4.1 Feature files . 11
4.2 Feature . 11
4.3 Scenario . 12
4.4 Scenario Outline . 12
4.5 Scenario Loop . 13
4.6 Scenario Precondition . 13
4.7 Background . 14
4.8 Steps . 15
4.9 Step Pattern . 17
4.10 Step Behave like . 20
4.11 Step Tables . 20
4.12 Step Text data . 21
4.13 Skipping a Step . 21
4.14 Tags . 22
4.15 Constants . 23
4.16 Terrain and Hooks . 24
4.17 Contexts . 26
4.18 World . 26
4.19 BDD XML Report . 27
4.20 Cucumber json Report . 30
4.21 Testing Step Patterns . 32

5 Command Line Usage 35
5.1 Run - Specify Feature files . 35

i

5.2 Run - Specify base directory . 35
5.3 Run - Early exit . 35
5.4 Run - Debug Steps . 36
5.5 Run - Show traceback on failure . 36
5.6 Run - Use custom marker to uniquely identify test run . 36
5.7 Run - Profile . 37
5.8 Run - Dry run . 37
5.9 Run - Specifying Scenarios by id . 37
5.10 Run - Shuffle Scenarios . 37
5.11 Run - Specify certain Features and/or Scenarios by tags . 38
5.12 Run - Work in progress . 38
5.13 Run - Write BDD XML result file . 38
5.14 Run - Code Coverage . 39
5.15 Run - Write Cucumber JSON file . 39
5.16 Run - Write JUnit XML file . 40
5.17 Run - Log all features, scenarios, and steps to syslog . 40
5.18 Run - Debug code after failure . 40
5.19 Run - Inspect code after failure . 40
5.20 Run - Printing results to console . 41
5.21 Run - dots output formatter . 41
5.22 Run - Writing out Scenario and Step ids . 42
5.23 Run - Specifying Arbitrary User Data on the command-line . 43
5.24 Show - Expand feature . 43
5.25 Help Screen . 43

6 Indices and tables 47

ii

radish Documentation, Release 0.17.1

Contents:

CONTENTS 1

radish Documentation, Release 0.17.1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

radish is a Behaviour Driven Development-Tool completely written in python.

1.1 Why yet another python BDD tool?

In addition to the standard gherkin language features which almost every BDD tool tries to implement radish implements
uncommon but useful features like Scenario Loops, Scenario Preconditions and Variables.

3

radish Documentation, Release 0.17.1

4 Chapter 1. Introduction

CHAPTER

TWO

INSTALLATION

radish is available as a Python 3 package on PyPI and thus installable with pip.

2.1 System Wide Installation

To install radish system wide use the following pip command:

pip install radish-bdd

Note: Make sure your user has enough privileges to install a package to the systems folders.

2.2 virtualenv Installation

To install radish in a virtual python environment use the following commands:

virtualenv radish-env -p python3
source radish-env/bin/activate
pip install radish-bdd

2.3 Install from source

To install radish from source you can clone the GitHub repository and use setuptools:

git clone https://github.com/radish-bdd/radish
cd radish
python setup.py install

5

radish Documentation, Release 0.17.1

6 Chapter 2. Installation

CHAPTER

THREE

QUICKSTART

In this chapter we will write our first feature file and python step implementation. More detailed information about
Feature files, Scenarios and Steps can be found in the Tutorial chapter.

3.1 Writing the first feature file

Let’s assume we’ve written a really awesome calculator class and want to test it with radish. Our first feature file should
test if the calculator is able to correctly sum numbers. Feature files are nothing more than a text file containing a Feature
with one or more Scenarios. Each Scenario contains one or more Steps:

Feature: <My feature title>
... Some feature description ...

Scenario: <My scenario title>
... Some steps testing our python code ...

To test our calculator we could write the following Feature and save it in a file called features/SumNumbers.feature:

Feature: The calculator should be able to sum numbers
In order to make sure the calculator
sums numbers correctly I have the following
test scenarios:

Scenario: Test my calculator
Given I have the numbers 5 and 6
When I sum them
Then I expect the result to be 11

3.2 Implementing Steps

In order to run our SumNumbers.feature feature file we have to tell radish what to do for each Step in our Scenario.

All Steps are implemented in a python module as functions. These python modules are loaded by radish and the Step
implementations are automatically matched with the corresponding Steps in the feature file.

Let’s write our first feature file called radish/steps.py:

-*- coding: utf-8 -*-

(continues on next page)

7

radish Documentation, Release 0.17.1

(continued from previous page)

from radish import given, when, then

@given("I have the numbers {number1:g} and {number2:g}")
def have_numbers(step, number1, number2):

step.context.number1 = number1
step.context.number2 = number2

@when("I sum them")
def sum_numbers(step):

step.context.result = step.context.calculator.add(\
step.context.number1, step.context.number2)

@then("I expect the result to be {result:g}")
def expect_result(step, result):

assert step.context.result == result

Each of our Step implementation functions is decorated by radish’s given, when or then decorator. The first argument
of these decorators is a regex-similar expression. These expressions are used to match the Steps from the feature file.
A Step can contain parameters which are parsed by radish and passed after to the step implementation function. The
first argument of a step implementation function is always the step object itself. The most interesting part about the
step object is the step.context object. This object represents a Scenario wide context with dynamic attributes. Our step
implementation already uses this context object to store the numbers to sum and a calculator instance. This calculator
instance is created in a hook in the so called terrain file module.

3.3 Implementation Terrain

In addition to the Step implementations is possible to implement hooks which are called during a run by radish. These
hooks are usually implemented in a file called terrain.py alongside the step implementation modules. For our calculator
tests we use the radish/terrain.py file to instantiate the calculator object:

-*- coding: utf-8 -*-

from radish import before, after

from calculator import Calculator

@before.each_scenario
def init_calculator(scenario):

scenario.context.calculator = Calculator(caching=True)

@after.each_scenario
def destory_calculator(scenario):

del scenario.context.calculator

Yes, to be honest in this case it seems like an overkill to have this hooks implementation. Where it becomes really
useful and handy are when database, external resources, etc. are involved.

8 Chapter 3. Quickstart

radish Documentation, Release 0.17.1

3.4 Run the feature file

So far we’ve got the following files in our project:

features/
SumNumbers.feature

radish/
steps.py
terrain.py

With this setup we can just execute the following command and radish will run our feature file:

radish features/

radish will output the following:

Feature: The calculator should be able to sum numbers # features/SumNumbers.feature
In order to make sure the calculator
sums numbers correctly I have the following
test scenarios:

Scenario: Test my calculator
Given I have the numbers 5 and 6
When I sum them
Then I expect the result to be 11

1 features (1 passed)
1 scenarios (1 passed)
3 steps (3 passed)
Run 1447487393 finished within 0:0.000436 minutes

How does radish find my python modules? radish imports all python modules inside the basedir. Per default the basedir
points to $PWD/radish which in our case is perfectly fine. If the python implementation modules are located at another
location the -b option followed by the path to the files can be given and radish will import the files from this location.

3.5 Run state result

Step:

A Step run state can be one of the following values.

• passed

• failed

• skipped

• pending

• untested

Scenario:

Scenario run state result is set set as follows:

If any Step in the Scenario is did not “pass” then return the run result of the first Step that did not pass. As such
Scenario run state result is always one of the Step run state values described above.

3.4. Run the feature file 9

radish Documentation, Release 0.17.1

Feature:

If any Scenario in the Feature is did not “pass” then return the run result of the first Step that did not pass. As such
Feature run state result is always one of the Step run state values described above.

10 Chapter 3. Quickstart

CHAPTER

FOUR

TUTORIAL

This chapter covers the whole Tutorial about radish and its features.

4.1 Feature files

All tests are written in so-called feature files. Feature files are plain text files ending with .feature. A feature file can
contain only one BDD Feature written in a natural language format called Gherkin. However, radish is able to run one
or more feature files. The feature files can be passed to radish as arguments:

radish features/
radish features/SumNumbers.feature features/DivideNumbers.feature
radish features/unit features/functional

4.2 Feature

A Feature is the main part of a feature file. Each feature file must contain exactly one Feature. This Feature should
represent a test for a single feature in your software similar to a test class in your unit code tests. The Feature is
composed of a Feature sentence and a Feature description. The feature sentence is a short precise explanation of the
feature which is tested with this Feature. The feature description as a more verbose explanation of the feature which is
tested. There you can answer the Why and What questions. A Feature has the following syntax:

Feature: <Feature sentence>
... Feature description
on multiple lines ...

A Feature must contain one or more Scenarios which are run when this feature file is executed.

Feature: <Feature sentence>
... Feature description
on multiple lines ...

Scenario: <Scenario 1 sentence>
... Steps ...

Scenario: <Scenario 2 sentence>
... Steps ...

11

radish Documentation, Release 0.17.1

4.3 Scenario

A Scenario is located inside a Feature. You can think of a Scenario as of a standalone test case for the feature you want
to test. A Scenario contains one or more Steps. Each Scenario must have a unique sentence inside a Feature.

Feature: My Awesome Feature
In order to document
radish I write this feature.

Scenario: Test feature
... Some Steps ...

Scenario: Test feature with a bad case test
... Some Steps ...

4.4 Scenario Outline

A Scenario Outline is a more advanced version of a standard Scenario. It allows you to run a Scenario multiple times
with different input values. A Scenario Outline is defined with Examples. The Scenario is run with the input data from
each Example. The data from the Example can be accessed in a Scenario with the name of the data inside < and >. For
example see the following Scenario Outline which divides multiple numbers from the Examples:

Feature: Test dividing numbers
In order to test the
Scenario Outline features of
radish I test dividing numbers.

Scenario Outline: Divide Numbers
Given I have the number <number1>
And I have the number <number2>
When I divide them
Then I expect the result to be <result>

Examples:
number1	number2	result
10	2	5
6	3	2
24	8	3

Note: a PIPE (|) character within a Examples cell can be escaped with a backslash ().

Scenario Outlines can also be use within the step text. An example is shown in the following Scenario Outline:

Feature: Test dividing numbers
with using the step text in to test the
Scenario Outline features of
radish I test dividing numbers.

Scenario Outline: Divide Numbers
Given I have following numbers
"""

(continues on next page)

12 Chapter 4. Tutorial

radish Documentation, Release 0.17.1

(continued from previous page)

n1:<number1>,
n2:<number2>

"""
When I divide them
Then I expect the result
"""
result:<result>

"""

Examples:
number1	number2	result
10	2	5
6	3	2
24	8	3

4.5 Scenario Loop

A Scenario Loop is a standard Scenario which is repeated for a given amount of iterations. Scenario Loops can often
be useful when stabilization tests are performed in a CI environment. Scenario Loops have the following syntax:

Feature: My Awesome Feature
In order to document
radish I write this feature.

Scenario Loop 10: Some stabilization test
... Some Steps ...

Note: Scenario Loops are not standard gherkin

4.6 Scenario Precondition

Sometimes it can be very useful to reuse specific Scenarios. That’s why we’ve decided to implement Scenario Pre-
conditions in radish even though it’s not common for a BDD tool. Before you start using Scenario Preconditions you
should really think about the reason why you are using it. Behavior Driven Development Scenarios should be as short
and concise as possible without a long list of dependencies. But there will always be these edge cases where it really
makes sense to have a precondition for your Scenario. Every Scenario can be used as a Precondition Scenario. Scenario
Preconditions are implemented as special tags:

Feature: My Awesome Feature
In order to document
radish I write this feature.

@precondition(SomeFeature.feature: An awesome Scenario)
Scenario: Do some crazy stuff

When I add the following users to the database
| Sheldon | Cooper |

Then I expect to have 1 user in the database

4.5. Scenario Loop 13

radish Documentation, Release 0.17.1

radish will import the Scenario with the sentence An awesome Scenario from the feature file SomeFeature.
feature and run it before the Do some crazy stuff Scenario. The following lines will be written:

Feature: My Awesome Feature
In order to document
radish I write this feature.

@precondition(SomeFeature.feature: An awesome Scenario)
Scenario: Do some crazy stuff
As precondition from SomeFeature.feature: An awesome Scenario

Given I setup the database
From scenario
When I add the following users to the database

| Sheldon | Cooper |
Then I expect to have 1 user in the database

As you can see radish will print some information about the Scenario where the Steps came from. radish supports
multiple and nested Scenario Preconditions, too. Recursions are detected and radish will print an appropriate error
message.

If you have preconditions in a Scenario it’s inconvenient to send it to your colleague or post it somewhere because you
have multiple files. radish is able to resolve all preconditions and expand them to a single file. Use the radish show
--expand command to do so:

$ radish show --expand MyFeature.feature
Feature: My Awesome Feature

In order to document
radish I write this feature.

#@precondition(SomeFeature.feature: An awesome Scenario)
Scenario: Do some crazy stuff

Given I setup the database
When I add the following users to the database

| Sheldon | Cooper |
Then I expect to have 1 user in the database

The information about the precondition is commented out.

Note: Scenario Preconditions are not standard gherkin

4.7 Background

A Background is a special case of the Scenario. It’s used to add some context to each Scenario of the same Feature.
You can think of it as a setup Scenario for the other Scenarios. It consists of one or more Steps in exactly the same
way as regular Scenarios. The Background is run after the before hooks of each Scenario but before the Steps of this
Scenario.

A Background consists of an optional short description and Steps:

Background: [optional short description]
[zero or more Steps]

A simple Background might look like this:

14 Chapter 4. Tutorial

radish Documentation, Release 0.17.1

Feature: Calculator Addition
In order to support all four elementary
binary operations the calculator shall
implement the binary addition operator.

Background:
Given the calculator is started

Scenario: Adding two positive integers
Given the integer 5
And the integer 2
When the integers are added
Then the sum is 7

Cucumber defined some useful good practices for using backgrounds. It’s worth to read them carefully.

4.8 Steps

The steps are the heart piece of every Feature file. A line in a Scenario is called Step. The steps are the only thing
which are really executed in a test. A Step is written in a human readable language. Each step is parsed by radish and
matched with a step implementation written in Python. If a Step does not match any step implementation radish will
raise an exception and abort the run.

All steps are implemented in Python files located inside the radish basedirs. Per default this base directory points to
$PWD/radish. However, the base directory location can be changed by specifying the -b option when triggering radish.
You can also specify -b multiple times to load from multiple locations. There are several ways how to implement steps.
The most common way is by decorating your step implementation functions with one of the following decorators:

• @step(pattern)

• @given(pattern)

• @when(pattern)

• @then(pattern)

The difference between those four decorators is that for the given, when and then decorator the corresponding keyword
is prefixed. For example @given("I have the number") becomes the pattern Given I have the number.

A basic steps.py file with some step implementations could look like the following:

from radish import given, when, then

@given("I have the number {number:g}")
def have_number(step, number):

step.context.numbers.append(number)

@when("I sum them")
def sum_numbres(step):

step.context.result = sum(step.context.numbers)

@then("I expect the result to be {result:g}")
(continues on next page)

4.8. Steps 15

https://github.com/cucumber/cucumber/wiki/Background#good-practices-for-using-background

radish Documentation, Release 0.17.1

(continued from previous page)

def expect_result(step, result):
assert step.context.result == result

The first example of a step implementation function is always an object of type Step.

Another way to implement step functions is using an enitre class:

from radish import steps

@steps
class Calculator(object):

def have_number(self, step, number):
"""I have the number {number:g}"""
step.context.numbers.append(number)

def sum_numbres(self, step):
"""I sum them"""
step.context.result = sum(step.context.numbers)

def expect_result(self, step, result):
"""I expect the result to be {result:g}"""
assert step.context.result == result

With the @steps decorator all methods of the given class are registered as steps. The step pattern is always the first
line of the docstring of each method. If a method inside the call is not a step implementation you can add the method
name to the ignore attribute of this class:

from radish import steps

@steps
class Calculator(object):

ignore = ["validate_number"]

def validate_number(self, number):
"""Validate the given number"""
...

def have_number(self, step, number):
"""I have the number {number:g}"""
self.validate_number(number)
step.context.numbers.append(number)

16 Chapter 4. Tutorial

radish Documentation, Release 0.17.1

4.9 Step Pattern

The pattern for each Step can be defined in two ways. The default way is to specify the Step pattern in a format similar
to the one used by Python’s str.format() method - but in the opposite way. radish uses parse_type to parse this
pattern. The pattern can be a simple string:

@given("I sum all my numbers")
...

This Step pattern doesn’t have any arguments. To specify arguments use the {NAME:TYPE} format:

@given("I have the number {number:g}")
def have_number(step, number):

...

The argument will be passed as keyword argument to the step implementation function with the specified name. If no
name is specified the arguments are positional:

@given("I have the numbers {:g} and {:g}")
def have_numbers(step, number1, number2):

...

Per default the following types are supported:

4.9. Step Pattern 17

https://github.com/jenisys/parse_type

radish Documentation, Release 0.17.1

Type Characters matched Output
type

w Letters and underscore str
W Non-letter and underscore str
s Whitespace str
S Non-whitespace str
d Digits (effectively integer numbers) int
D Non-digit str
n Numbers with thousands separators (, or .) int
% Percentage (converted to value/100.0) float
f Fixed-point numbers float
e Floating-point numbers with exponent e.g. 1.1e-10, NAN (all case insensitive) float
g General number format (either d, f or e) float
b Binary numbers int
o Octal numbers int
x Hexadecimal numbers (lower and upper case) int
ti ISO 8601 format date/time e.g. 1972-01-20T10:21:36Z (“T” and “Z” optional) datetime
te RFC2822 e-mail format date/time e.g. Mon, 20 Jan 1972 10:21:36 1000 datetime
tg Global (day/month) format date/time e.g. 20/1/1972 10:21:36 AM 1:00 datetime
ta US (month/day) format date/time e.g. 1/20/1972 10:21:36 PM 10:30 datetime
tc ctime() format date/time e.g. Sun Sep 16 01:03:52 1973 datetime
th HTTP log format date/time e.g. 21/Nov/2011:00:07:11 +0000 datetime
ts Linux system log format date/time e.g. Nov 9 03:37:44 datetime
tt Time e.g. 10:21:36 PM -5:30 time
MathEx-
pression

Mathematic expression containing: [0-9 +-*/%.e]+ float

Quoted-
String

String inside double quotes (“). Double quotes inside the string can be escaped with a
backslash

text w/o
quotes

Boolean Boolean value: True: 1, y, Y, yes, Yes, YES, true, True, TRUE, on, On, ON False: 0, n, N,
no, No, NO, false, False, FALSE, off, Off, OFF

bool

These standard types (MathExpression, QuotedString and Boolean) can be combined with the following cardinalities:

"{numbers:d}" #< Cardinality: 1 (one; the normal case)
"{number:d?}" #< Cardinality: 0..1 (zero or one = optional)
"{numbers:d*}" #< Cardinality: 0..* (zero or more = many0)
"{numbers:d+}" #< Cardinality: 1..* (one or more = many)

If you accept one or more Boolean for your step you could therefor do:

@given('I have the flags {flags:Boolean+}')
def have_flags(step, flags)

...

By default the , (comma) is used as a separator, but you are able to specify your own. Let’s assume you want to use
and instead of ,:

from radish import custom_type, register_custom_type, TypeBuilder

@custom_type('Number', r'\d+')
def parse_number(text):

return int(text)
(continues on next page)

18 Chapter 4. Tutorial

radish Documentation, Release 0.17.1

(continued from previous page)

register the NumberList type
register_custom_type(NumberList=TypeBuilder.with_many(

parse_number, listsep='and'))

Now you can use NumberList as the type in your step pattern. As of now (Mar-2024) parse does not support cardinality,
if cardinality is required a custom type needs to be created or the folling issue needs to be adressed: https://github.com/
r1chardj0n3s/parse/issues/181

As you’ve seen you can use the custom_type decorator, the register_custom_type function and the TypeBuilder
to extend the default types. This could be useful to directly inject more advanced objects to the step implementations:

from radish import custom_type

@custom_type("User", r"[A-Z][a-z]+ [A-Z][a-z]+")
def user_type(text):

"""
Return a user object by the given name
"""
if text not in world.database.users: # no user found

return None

return world.database.users[text]

This custom type can be used like this in the Step pattern:

from radish import then

@then("I expect the user {user:User} has the email {}")
def expect_user_has_email(step, user, expected_email):

assert user.email == expected_email, "User has email '{0}'.
Expected was email '{1}'".format(user.email, expected_email)

The TypeBuilder provides the following functionality:

: TypeBuilder.with_many(func[,listsep=',']) :
Extend the given parse function to accept multiple values of func. See: https://github.com/jenisys/parse_type#
cardinality

: TypeBuilder.with_optional(func) :
Make the string parsed by func optional. See: https://github.com/jenisys/parse_type#cardinality

: TypeBuilder.make_enum(enum : dict) :
Create a type for an enum represented by a dict. See: https://github.com/jenisys/parse_type#
enumeration-name-to-value-mapping

: TypeBuilder.make_choice(choices : list) :
Create a type which accepts the values in the given list See: https://github.com/jenisys/parse_type#
choice-name-enumeration

: TypeBuilder.make_variant(variants: list) :
Create a type which can be one of the given types See: https://github.com/jenisys/parse_type#
variant-type-alternatives

If these Step patterns do not fit all your use cases you could use your own Regular Expression to match a Step sentence:

4.9. Step Pattern 19

https://github.com/r1chardj0n3s/parse/issues/181
https://github.com/r1chardj0n3s/parse/issues/181
https://github.com/jenisys/parse_type#cardinality
https://github.com/jenisys/parse_type#cardinality
https://github.com/jenisys/parse_type#cardinality
https://github.com/jenisys/parse_type#enumeration-name-to-value-mapping
https://github.com/jenisys/parse_type#enumeration-name-to-value-mapping
https://github.com/jenisys/parse_type#choice-name-enumeration
https://github.com/jenisys/parse_type#choice-name-enumeration
https://github.com/jenisys/parse_type#variant-type-alternatives
https://github.com/jenisys/parse_type#variant-type-alternatives

radish Documentation, Release 0.17.1

from radish import then

@then(re.compile(r"I expect the user ([A-Z][a-z]+ [A-Z][a-z]+|PENNY&LEONARD)+"))
def complex_stuff(step, user):

...

The groups matched by the Regular Expression are passed to the step implementation function.

4.10 Step Behave like

Sometimes it could be useful to call another step within a step. For example it could be useful if you want to change
the interface but still support the old steps or if you want to combine multiple steps in one step. This feature is called
behave like and you can use it as the following:

@step("I want to setup the database")
def setup_database(step):

step.behave_like("I start the database server")
step.behave_like("I add the system users to the database")
step.behave_like("I add all roles to the database")

4.11 Step Tables

Step Tables are used to provide table-like data to a Step. The Step Table syntax looks similar to the Scenario Outline
Examples:

...
Scenario: Check database

Given I have the following users
forename	lastname	nickname
Peter	Parker	Spiderman
Bruce	Wayne	Batman

When I add them to the database
Then I expect 2 users in the database

The Step Table can be accessed in the Step Implementation function through the step.table attribute which is a list
of dict:

from radish import given, when, then

@given("I have the following users")
def have_number(step):
step.context.users = step.table

@when("I add them to the database")
def sum_numbres(step):
for user in step.context.users:

step.context.database.users.add(forename=user['firstname'], \
lastname=user['lastname'], nickname=user['nickname'])

(continues on next page)

20 Chapter 4. Tutorial

radish Documentation, Release 0.17.1

(continued from previous page)

@then("I expect {number:g} users in the database")
def expect_result(step, number):
assert len(step.context.database.users) == number

4.12 Step Text data

Like the Step Tables a Step can also get an arbitrary text block as input. The syntax to pass text data to a Step looks like
this:

...
Scenario: Test quote system
Given I have the following quote

"""
To be or not to be
"""

When I add it to the database
Then I expect 1 quotes in the database

To access this text data you can use the text attribute on the step object:

from radish import given, when, then

@given("I have the following quote")
def have_quote(step):

step.context.quote = step.text

@when("I add it to the database")
def add_quote_to_db(step):

step.context.database.quotes.append(step.context.quote)

@then("I expect {number:g} quote in the database")
def expect_amount_of_quotes(step, number):

assert len(step.context.database.quotes) == number

Note: Variables from a Scenario Outline are replaced in the step text.

4.13 Skipping a Step

In some situations it might be required to skip a step under certain conditions. For e.g. ;

...
Scenario: Test quote system
Given I have the following quote in target DB

"""
To be or not to be

(continues on next page)

4.12. Step Text data 21

radish Documentation, Release 0.17.1

(continued from previous page)

"""
When I found 2 quotes in the DB
Then I delete one of them

To skip the step if To be or not to be quote could not be found:

from radish import given, when, then

@given("I have the following quote in target DB")
def have_quote_in_target_db(step):

code that would check the query in the DB

if query is None:
step.skip()
return

Assuming this query includes data that we fetched from DB.
which might be a list of dictionaries.
step.context.result = query

@when("I found {number:g} quotes in the DB")
def found_n_quotes_in_the_db(step, number):

if not hasattr(step.context, "result"):
step.skip()

assert len(step.context.result) == number

step.context.database.delete_id = step.context.result[0]['id']

@then("I expect {number:g} quote in the database")
def expect_amount_of_quotes(step, number):

if not hasattr(step.context, "result"):
step.skip()

assert an_internal_function_to_delete_db_row(step.context.database.delete_id) is True

4.14 Tags

Tags are a way to group or classify Features and Scenarios. Radish is able to only run Features or Scenarios with
specific Tags. Tags are declared with a similar syntax as decorators in Python:

@regression
Feature: Some important feature

In order to demonstrate
the Tag feature in radish
I write this feature.

@good_case
(continues on next page)

22 Chapter 4. Tutorial

radish Documentation, Release 0.17.1

(continued from previous page)

Scenario: Some good case test
...

@bad_case
Scenario: Some bad case test

...

Note: a Scenario inherits all tags of the Feature it is defined in!

Tags can also be used for additional meta data.

@author mario @date Sat, 12 Aug 2023 18:41:23 +0200
@reviewer luigi
Feature: Some important feature

In order to demonstrate
the Tag feature in radish
I write this feature.

When triggering radish you can pass the --tags command line option followed by a tag expression. Tag expressions
are parsed with tag-expressions. Only these Features/Scenarios are ran.

Run all regression tests:

radish features/ --tags regression

Run all good case or bad case tests:

radish features/ --tags 'good_case or bad_case'

Run all tags with some argument, example: find all tagged as authored by tuxtimo

radish features/ --tags 'author(tuxtimo)'

Tags with argument will have the argument inside open and closing parenthesis. @tag(value) and @tag value are the
same tag and can be filtered as tag(value). Tags values with spaces are not supported/behave unexpected! Only the
part before the first space is used for filtering. @tag(value) and @tag(value 1) are the same tag for filtering and both
will be matched with tag(value).

4.15 Constants

Constants are specific Tags which define a constant which can be used in the Steps. This could be useful when you have
values which are used in several points in a Feature and which should be named instead of appear as magic numbers.
A sample use-case I’ve seen is specifying a base temperature:

@constant(base_temperature: 70)
Feature: Test heater

In order to test my
heater system I write
the following scenarios.

Scenario: Test increasing the temperature
Given I have the room temperature ${base_temperature}

(continues on next page)

4.15. Constants 23

https://github.com/timofurrer/tag-expressions

radish Documentation, Release 0.17.1

(continued from previous page)

When I increase the temperature about 5 degrees
Then I expect the temperature to be ${base_temperature} + 5

Note: Constants are not standard gherkin

4.16 Terrain and Hooks

In addition to the Step implementation radish provides the possibility to implement Hooks. These Hooks are usually
placed in a file called terrain.py inside the base directory. Hooks can be used to setup and tear down the Features,
Scenarios or Steps. There are two different Hook types:

• before

• after

These can be combined with the following Hook subjects:

• all

• each_feature

• each_scenario

• each_step

Hooks can be registered by adding these Hook types and subjects as decorators to Python functions:

from radish import before

from database import Database

@before.each_scenario
def connect_database(scenario):

scenario.context.database = Database(name="foobar")
scenario.context.database.connect()

The Python functions must accept the respective model object and in the case of all a second argument which is the
radish run marker (a unique run id):

from radish import after

@after.all
def cleanup(features, marker):

os.remove('foo')

24 Chapter 4. Tutorial

radish Documentation, Release 0.17.1

4.16.1 Ordered Hooks

Sometimes it can be useful to explicitly order your Hooks instead of relying on the registration order. Each Hook
accepts an optional order: int keyword argument. The Hooks are called in ascending order for all before Hooks
and in descending order for all after Hooks. So for example the following hooks:

from radish import before, after

@before.each_step(order=2)
def before_second(step):
"""Will be called as second before hook for each step"""
print("BEFORE: 2nd")

@after.each_step(order=2)
def after_second(step):
"""Will be called as second after hook for each step"""
print("AFTER: 2nd")

@before.each_step(order=1)
def before_first(step):
"""Will be called as first before hook for each step"""
print("BEFORE: 1st")

@after.each_step(order=1)
def after_first(step):
"""Will be called as first after hook for each step"""
print("AFTER: 1st")

would yield the following output:

BEFORE: 1st
BEFORE: 2nd
AFTER: 2nd
AFTER: 1st

The default order is 100 for every Hook and so the order depends on the registration order of the Hook which corre-
sponds to the import and source code order.

4.16.2 Tagged Hooks

If you are using Tags you can specify that a certain Hook is only called for Features, Scenarios or Steps with the
according tags.

from radish import after

@after.each_scenario(on_tags='bad_case or crash')
def cleanup(scenario):

do some heavy cleanup!
pass

4.16. Terrain and Hooks 25

radish Documentation, Release 0.17.1

4.17 Contexts

As you may have noticed: each Feature and Scenario has it’s own context. You can dynamically add attributes to this
context. All Steps in a Scenario have the same context. This is the preferred way to share data between steps over the
world object.

from radish import before, given

@given("I have the number {number:g}")
def have_number(step, number):
accessing Scenario specific context
step.context.number = number

@before.each_feature
def setup(feature):

accessing Feature specific context
feature.context.setup = True

4.18 World

The world is a “global” radish context. It is used by radish to store the configuration and other utility functions. It can
be accessed by importing it from the radish. The world object is a threadlocal object so it is safe to use in threads.

You should not be using world to store data in scenarios and steps, that is what Contexts are for.

The config attribute of world world contains a Configuration object with named and positional arguments passed
into radish. A basic transformation is applied to each of the arguments to turn it into a python attribute: As such “-” is
replaced with “_”, “–” is removed, and “<” and “>” characters are removed.

For example --bdd-xml argument can be accessed using world.config.bdd_xml, and the argument <features>
are accesses as world.config.features.

from radish import world

print basedir
print(world.config.basedir)

print profile
print(world.config.profile)

Sometimes it’s useful to have specific variables and functions available during a whole test run. These variables and
functions can be added to the world object:

from radish import world, pick
import random

world.x = 42

@pick
def get_magic_number():

return random.randint(1, world.x)

26 Chapter 4. Tutorial

radish Documentation, Release 0.17.1

The pick decorator adds the decorated function to the world object. You can use this function later in a step imple-
mentation or another hook:

from radish import before, world

from security import Tokenizer

@before.each_scenario
def gen_token(scenario):

scenario.context.token = Tokenizer(world.get_magic_number())

4.19 BDD XML Report

Radish can report in the BDD XML format using --bdb-xml. The format of the XML is defined as follows:

XML declaration

<?xml version='1.0' encoding='utf-8'?>

<testrun> is a top level tag

agent
Agent of the test run composed of the user and hostname of the machine. Format: user@hostname

duration
Duration of test run in seconds rounded to the 10 decimal points.

starttime
Start time of the testrun run. Format: combined date and time representations, where date and time
is separated by letter “T”. Format: YYYY-MM-DDTHH:MM:SS

endtime
End time of the testrun run. Format: combined date and time representations, where date and time
is separated by letter “T”. Format: YYYY-MM-DDTHH:MM:SS

example:

<testrun>
agent="user@computer"
duration="0.0005660000"
starttime="2017-02-18T07:06:55">
endtime="2017-02-18T07:06:56"

>

The <testrun> contains the following tags

<feature> tag

id
Test run index id of the Feature. First feature to run is 1, second is 2 and so on.

sentence
Feature sentence.

result
Run state result of Feature run as described in Run state result

4.19. BDD XML Report 27

mailto:user@hostname

radish Documentation, Release 0.17.1

testfile
Path to the file name containing the feature. The path is relative to the basedir.

duration
Duration of Feature run in seconds rounded to the 10 decimal points.

starttime
Start time of the Feature run. Format: combined date and time representations, where date and time
is separated by letter “T”. Format: YYYY-MM-DDTHH:MM:SS

endtime
End time of the Feature run. Format: combined date and time representations, where date and time
is separated by letter “T”. Format: YYYY-MM-DDTHH:MM:SS

example:

<feature
id="1"
sentence="Step Parameters (tutorial03)"
result="failed"
testfile="./example.feature"
duration="0.0008730000"
starttime="2017-02-18T07:06:55"
endtime="2017-02-18T07:06:55"

>

The <feature> tag contains the following tags:

<description> tag:

tag content
CDATA enclosed description of the feature.

<description>
<![CDATA[This feature test following functionality
- awesomeness
- more awesomeness
]]>

</description>

<scenarios> tag:

Contains list of <scenarios> tags

example:

<scenarios>

The <scenarios> tag contains the following tags:

<scenario> tag:

id
Test run index id of the Scenario. First scenario to run is 1, second is 2 and so on.

sentence
Scenario sentence.

result
Run state result of Scenario run as described in Run state result

28 Chapter 4. Tutorial

radish Documentation, Release 0.17.1

testfile
Path to the file name containing the Scenario. The path is relative to the basedir.

duration
Duration of Scenario run in seconds rounded to the 10 decimal points.

starttime
Start time of the Scenario run. Format: combined date and time representations, where date and time
is separated by letter “T”. Format: YYYY-MM-DDTHH:MM:SS

endtime
End time of the Scenario run. Combined date and time representations, where date and time is
separated by letter “T”. Format: YYYY-MM-DDTHH:MM:SS

example:

<scenario
id="1"
sentence="Blenders"
result="failed"
testfile="./example.feature"
duration="0.0007430000"
endtime="2017-02-18T07:06:55"
starttime="2017-02-18T07:06:55"

>

The <scenario> tag contains the following tags:

<step> tag:

id
Test run index id of the Step. First Step to run is 1, second is 2 and so on.

sentence
Step sentence.

result
Run state result of Step run as described in Run state result

testfile
Path to the file name containing the Step. The path is relative to the basedir.

duration
Duration of Step run in seconds rounded to the 10 decimal points.

starttime
Start time of the Step run. Format: combined date and time representations, where date and time is
separated by letter “T”. Format: YYYY-MM-DDTHH:MM:SS

endtime
End time of the Step run. Format: combined date and time representations, where date and time is
separated by letter “T”. Format: YYYY-MM-DDTHH:MM:SS

example:

<step
id="1"
sentence="Given I put "apples" in a blender"
result="passed"
testfile="./example.feature"

(continues on next page)

4.19. BDD XML Report 29

radish Documentation, Release 0.17.1

(continued from previous page)

duration="0.0007430000"
endtime="2017-02-18T07:06:55"
starttime="2017-02-18T07:06:55"

>

The <step> MAY tag contains the following tags if error has occurred:

<failure> tag:

message
Test run index id of the Step. First Step to run is 1, second is 2 and so on.

type
Step sentence.

tag content
CDATA enclosed failure reason specifically exception traceback.

example:

<failure message="hello" type="Exception">
<![CDATA[Traceback (most recent call last):
File "/tmp/bdd/_env36/lib/python3.6/site-packages/radish/stepmodel.py", line 91, in␣

→˓run
self.definition_func(self, *self.arguments) # pylint: disable=not-callable

File "/tmp/bdd/radish/radish/example.py", line 34, in step_when_switch_blender_on
raise Exception("show off radish error handling")

Exception: show off radish error handling
]]>

</failure>

4.20 Cucumber json Report

Radish can write cucumber json result file after run using –cucumber-json=<ccjson>.

With local tools like Cucumber json report generator

java -jar cucumber-sandwich.jar -n -f path/to/the/folder/containing/json -o
path/to/folder/to/generate/reports/into

Or Jenkins Cucumber Reports Plugin

You can simply generate Pretty HTML Reports for Cucumber

4.20.1 Embedding data in cucumber report

With radish it is simple to enrich your reports with additional text, html or image data

Here are few code examples:

@then("I put some text to my report")
def put_text(step):

step.embed("This text goes into the report")

(continues on next page)

30 Chapter 4. Tutorial

https://github.com/damianszczepanik/cucumber-sandwich
https://wiki.jenkins.io/display/JENKINS/Cucumber+Reports+Plugin

radish Documentation, Release 0.17.1

(continued from previous page)

@then("I put selenium screenshot to my report")
def put_selenium_screenshot(step):

step.embed(context.web_driver.get_screenshot_as_base64(),
mime_type='image/png',
encode_data_to_base64=False)

@then("I put page source to my report")
def put_selenium_page_source(step):

step.embed(context.web_driver.page_source,
mime_type='text/html')

Html report output screen example:

4.20. Cucumber json Report 31

radish Documentation, Release 0.17.1

4.21 Testing Step Patterns

New since radish version v0.3.0

Radish provides a nice way to test if the implemented step pattern (@step(...)) match the expected sentences. This
is especially useful if you provide a set of step implementations and someone else is going to use them and implement
the feature files.

In a way your step pattern are the interface of your step implementation and interfaces ought to be tested properly.

If you’ve installed radish a command called radish-test is available. Install it’s dependencies with:

pip install radish-bdd[testing]

The matches sub command is used to test your step pattern inside your base dirs (-b / --basedir) against some
sentences defined in a YAML file. We call those files match configs. A match config file has the following format:

- sentence: <SOME STEP SENTENCE>
should_match: <THE STEP FUNCTION NAME IT SHOULD MATCH>
should_not_match: <THE STEP FUNCTION NAME IT SHOULD NOT MATCH>
with_arguments:
argument check if implicit type
- <ARGUMENT 1 NAME>: <ARGUMENT 1 VALUE>
argument check with explicit type
- <ARGUMENT 2 NAME>:

type: <ARGUMENT 2 TYPE NAME>
value: <ARGUMENT 2 VALUE>

argument check with explicit type and type cast
- <ARGUMENT 3 NAME>:

type: <ARGUMENT 3 TYPE NAME>
value: <ARGUMENT 3 VALUE>
cast: yes

argument check with explicit type and using repr() for the value
- <ARGUMENT 4 NAME>:

type: <ARGUMENT 4 TYPE NAME>
value: <ARGUMENT 4 VALUE>
use_repr: yes

sentence
Required. This is the sentence you want to test. It’s an example of a sentence which should match a
certain Step pattern.

should_match
Required if should_not_match omitted. This is the name of the Python Step implementation func-
tion which you expect the sentence will match with.

should_not_match
Required if should_match omitted. This is the name of a Python Step implementation function
which you expect the sentence will not match with.

with_arguments
Optional for should_match. This is a list of arguments which you expect will be passed in the
Python Step implementation function. The arguments can be specified as key-value pairs or as an
object with a type and value and a boolean value cast and a use_repr flag. This could be useful if a
custom argument expression is used to parse the arguments. The use_repr flag should be used when
comparing with a user defined type.

32 Chapter 4. Tutorial

radish Documentation, Release 0.17.1

4.21.1 Example

Let’s assume we have the following step.py implementation:

from radish.stepregistry import step
from radish import given, when, then

@step("I have the number {number:g}")
def have_number(step, number):

step.context.numbers.append(number)

@when("I sum them")
def sum_numbers(step):

step.context.result = sum(step.context.numbers)

@then("I expect the result to be {result:g}")
def expect_result(step, result):

assert step.context.result == result

And a step-matches.yml file like this:

- sentence: Given I have the number 5
should_match: have_number
with_arguments:

- number:
type: float
value: 5.0

- sentence: When I sum them
should_match: sum_numbers

- sentence: When I divide them
should_not_match: sum_numbers

- sentence: When I do some weird stuff
if no step is given it shouldn't match any at all
should_not_match:

- sentence: Then I expect the result to be 8
should_match: expect_result
with_arguments:

- result: 8.0

We can check the step.py implementation against the step-matches.yml match config file using the radish-test
CLI application:

radish-test matches tests/step-matches.yml

Due to the fact that the step.py module is located in $PWD/radish we don’t have to specify it’s location with -b or
--basedir.

For the radish-test call above we would get the following output:

4.21. Testing Step Patterns 33

radish Documentation, Release 0.17.1

Testing sentences from tests/step-matches.yml:
>> STEP "Given I have the number 5" SHOULD MATCH have_number ✓✓✓
>> STEP "When I sum them" SHOULD MATCH sum_numbers ✓✓✓
>> STEP "When I divide them" SHOULD NOT MATCH sum_numbers ✓✓✓
>> STEP "Then I expect the result to be 8" SHOULD MATCH expect_result ✓✓✓

4 sentences (4 passed)
Covered 3 of 3 step implementations

In case of success we get the exit code 0 and in case of failure we’d get an exit code which is greater than 0.

radish-test matches also supports step coverage measurements. Use --cover-min-percentage to let
radish-test matches fail if a certain coverage threshold is not met and use the --cover-show-missing com-
mand line option to list all not covered steps and their location.

34 Chapter 4. Tutorial

CHAPTER

FIVE

COMMAND LINE USAGE

This chapter describes how to use Radish from the command line. All it’s commands, options and arguments.

5.1 Run - Specify Feature files

All arguments which do not belong to any command line option are interpreted as Feature files or Feature file locations.
If the argument is a directory all files ending with .feature will be run. It’s possible to mix files and directories:

radish SomeFeature.feature myfeatures/

5.2 Run - Specify base directory

Radish searches for and imports Step and Terrain python files in the base directories which by default is set to the
radish folder inside the current working directory (a.k.a $PWD/radish). To specify an alternate path you may use
the -b or --basedir command line option:

radish -b tests/radish SomeFeature.feature
radish --basedir tests/radish SomeFeature.feature

Since version v0.4.2 you can specify -bmultiple times to import Python modules containing steps and terrain functions
from multiple locations:

radish -b tests/radish -b custom/radish SomeFeature.feature

Since version v0.7.0 you can use multiple basedirs within one -b flag split by a colon (:). Similar to the possibilities
you’ve got with $PATH. On Windows it is not possbile to use a colon (:) because it is used in almost any absolute path,
e.g. C:\foo\bar. Since version v0.11.2 you can use a semicolon (;) on Windows for multiple basedirs.

5.3 Run - Early exit

By default Radish will try to run all specified Scenarios even if there are failed Scenarios during the run. If you want
to abort the test run after the first error occurred you can use the -e or --early-exit option:

radish SomeFeature.feature -e
radish SomeFeature.feature --early-exit

35

radish Documentation, Release 0.17.1

5.4 Run - Debug Steps

Radish provides the ability to debug each step using a debugger. You can enable that using --debug-steps command
line option.

radish --debug-steps SomeFeature.feature

The IPython debugger is used if present. If it isn’t the standard Python debugger is used instead. Please consult the
official debugger documentation for the common debugger workflow and commands.

For example you can list the variables available by printing locals().

ipdb> locals()
{'step': <radish.stepmodel.Step object at 0x7f4d5b6ca400>}

As you can see, when a failure happens inside the Step you can see the step arguments such as step.

5.5 Run - Show traceback on failure

Radish can display a complete traceback in case a Step fails. You can use the -t or --with-traceback command
line option for that:

radish SomeFeature.feature -t
radish SomeFeature.feature --with-traceback

5.6 Run - Use custom marker to uniquely identify test run

Radish supports marker functionality which is used to uniquely identify a specific test run. By default the marker is set
to the number of seconds from the epoch (01/01/1970). You can specify your own marker using the -m or --marker
command line option.

The marker is also displayed in the summary of a test run:

radish SomeFeature.feature -m "My Marker"
radish SomeFeature.feature --marker "My Marker"

... radish output

Run My Marker finished within 0:0.001272 minutes

The marker is also passed into all the hooks defined in the terrain files. To see example code please consult terrain.

36 Chapter 5. Command Line Usage

https://docs.python.org/3/library/pdb.html

radish Documentation, Release 0.17.1

5.7 Run - Profile

Radish allows you to pass custom data to a Terrain hook code or to the Step implementations using the -p or --profile
command line option. This can be used to customize your test runs as needed.

The value specified to the -p / --profile command line option is made available in world.config.profile. Please
see World for for an example.

A common usage of profile s setting it to some environment value such as stage or production.

radish SomeFeature.feature -p stage
radish SomeFeature.feature --profile stage

Note: -p / --profile is being deprecated and will be removed in a future version of Radish. Please use -u /
--user-data instead. See Arbitrary User Data for details.

5.8 Run - Dry run

Radish allows you to pass custom flags to a Terrain hook code or to Step implementations using the -d or --dry-run
command line option. This can be used to customize your test runs as needed.

The -d / --dry-run command line switch is made available in world.config.dry_run which is set to True. Please
see World for an example.

radish SomeFeature.feature -d
radish SomeFeature.feature --dry-run

5.9 Run - Specifying Scenarios by id

Radish can also runs specific scenarios by id using the -s or --scenarios command line option. The ids are scenarios
indexed by the parsing order. The first Scenario in the first Feature will have the id 1, the second scenario the id 2. The
Scenario ids are unique within all Features from this run. The value can be a single Scenario id or a comma separated
list of Scenario ids:

You can use --write-ids command line switch to print Scenario ids. Please consult Run - Writing out Scenario and
Step ids

radish SomeFeature.feature -s 1
radish SomeFeature.feature --scenarios 1,2,5,6

5.10 Run - Shuffle Scenarios

Radish can also shuffle the Scenarios by using the --shuffle command line option. This is useful when you are trying
to detect if any Scenario has unintended side effects on other Scenarios.

radish SomeFeature.feature --shuffle

5.7. Run - Profile 37

radish Documentation, Release 0.17.1

5.11 Run - Specify certain Features and/or Scenarios by tags

Radish is able to run only a selection of certain Features and/or Scenarios using the --tags command line option. You
can specify the tags of Features/Scenarios which should be run. The command line option value has to be a valid tag
expression. Radish uses tag-expressions. The following are some valid tag expressions:

radish SomeFeature.feature --tags 'regression'
radish SomeFeature.feature --tags 'good_case and in_progress'
radish SomeFeature.feature --tags 'good_case'
radish SomeFeature.feature --tags 'regression and good_case and not real_hardware'
radish SomeFeature.feature --tags 'database or filesystem and bad_case'
radish SomeFeature.feature --tags 'author(tuxtimo)'

Be aware that Scenarios inherit the tags from the Feature they are defined it.

To learn how to tag Features and Scenarios please refer to Tags section.

5.12 Run - Work in progress

Radish is able change the state of the outcome. Scenarios which are still work in progress and are expected to fail, can
be run with:

radish SomeFeature.feature --wip

To count as a success all Scenarios in this Feature need to fail. If a Scenario passes the run is failed. A suggested
workflow is to tag WIP Scenarios with a @wip tag an run your tests twice.

radish SomeFeature.feature --wip --tags wip
radish SomeFeature.feature --wip --tags 'not wip'

5.13 Run - Write BDD XML result file

Radish can report it’s test run results to a XML file after a test run using the --bdd-xml command line switch. The
command line option value must be a file path where the XML file should be written to.

To write the XML file lxml is required. Install it with:

pip install radish-bdd[bddxml]

radish SomeFeature.feature --bdd-xml /tmp/result.xml

To understand the format BDD XML consult: BDD XML Report.

38 Chapter 5. Command Line Usage

https://github.com/timofurrer/tag-expressions

radish Documentation, Release 0.17.1

5.14 Run - Code Coverage

Radish can use the coverage package to measure code coverage of the code run during the tests using the
--with-coverage command line option. You can also limit which packages it generates metrics for by providing file
paths or package names using --cover-packages. The --cover-packages command line option is the --source
command line switch used by coverage. See coverage documention

To use the code coverage feature you have to install the necessary extra dependencies with:

pip install radish-bdd[coverage]

The following options are also available to configure the coverage measurement and report:

–with-coverage
enables the coverage measurement

–cover-packages
specify one or more packages to measure. Multiple package names have to be separated with a
comma.

–cover-append
append the coverage data to previously measured data.

–cover-config-file
specify a custom coverage config file. By default the $PWD.coveragerc file is read if it exists.

–cover-branches
include branch coverage into the measurement

–cover-erase
erase all previously collected coverage data

–cover-min-percentage
let the radish run file if the given coverage percentage is not reached

–cover-html
generate an HTML coverage report

–cover-xml
generate a XML coverage report

5.15 Run - Write Cucumber JSON file

Radish can report it’s test run results to a Cucumber style JSON file after a test run using the --cucumber-json
command line option. The command line option value must be a file path where the JSON file should be written to.

radish SomeFeature.feature --cucumber-json /tmp/result.json

Documentation describing the format of the Cucumber JSON file can be found here: https://www.relishapp.com/
cucumber/cucumber/docs/formatters/json-output-formatter

5.14. Run - Code Coverage 39

https://coverage.readthedocs.io/en/latest/cmd.html#execution
https://www.relishapp.com/cucumber/cucumber/docs/formatters/json-output-formatter
https://www.relishapp.com/cucumber/cucumber/docs/formatters/json-output-formatter

radish Documentation, Release 0.17.1

5.16 Run - Write JUnit XML file

Radish can report it’s test run results to a JUnit style XML file after a test run using the --junit-xml command line
option. The command line option value must be a file path where the XML file should be written to.

radish SomeFeature.feature --junit-xml /tmp/result.xml

JUnit allows to add properties only to testsuite but tags on scenario level can be useful inside the matching
testcase. This can be achieved using --junit-relaxed.

radish SomeFeature.feature --junit-relaxed /tmp/result.xml

5.17 Run - Log all features, scenarios, and steps to syslog

Radish provides the –syslog command line option which can be used to log all of your features, scenarios, and steps to
the syslog. The caveat here is this option is only supported on systems where the Python standard library supports the
system logger (syslog). This command line option works well in UNIX and UNIX-like systems (Linux) but will not
work on Windows machines.

This can be especially useful for consolidating all of your logging data in one central repository.

radish SomeFeature.feature --syslog

If you are unfamiliar with the syslog feature, please consult the official syslog documentation.

5.18 Run - Debug code after failure

Radish debugging mechanisms include the ability to drop into either IPython debugger or the Python debugger on
code failures using the --debug-after-failure command line option. Using IPython is preferred over the standard
Python debugger.

If you are unfamiliar with the Python debugger please consult the official debugger documentation.

radish SomeFeature.feature --debug-after-failure

Please consult Run - Debug Steps for debugging tips.

5.19 Run - Inspect code after failure

Radish debugging mechanisms include the ability to drop into a IPython shell upon code failures using the
--inspect-after-failure command line option.

To inspect code with IPython install the necessary extra dependencies with:

pip install radish-bdd[ipython-debugger]

radish SomeFeature.feature --inspect-after-failure

Please consult Run - Debug Steps for debugging tips.

40 Chapter 5. Command Line Usage

https://docs.python.org/3/library/syslog.html#module-syslog
https://docs.python.org/3/library/pdb.html

radish Documentation, Release 0.17.1

5.20 Run - Printing results to console

Note: Pending state means “yet to be executed”.

The Radish console output is aimed to be powerful and explicit. It uses ANSI color codes and line ‘overwriting’ to
format and color the output to make it more user friendly.

The anatomy of the console output is a follows:

Executing Scenario Step sentences as well as entries in the Scenario Outline Example and Scenario Loop tables are
printed to the console first, colored in bold yellow.

As the Scenario Steps, Scenario Outline Example entries and Scenario Loop iterations have finished the execution the
“ANSI line jump” is used to replace the printed yellow lines with the outcome of the Step run which is colored in bold
green on success or bold red in case of failure.

Exception messages and tracebacks are printed upon failure below the failed Step, Scenario Outline Example or Sce-
nario Loop Iteration entry.

Radish provides several command line options to help you with console output format.

A common use of Radish is to run it using a script or in a continuous integration setup. Such setups usually do not
support “ANSI” color codes or line jumps. This is where the combined use of --no-ansi and --write-steps-once
command line options become handy.

The --no-ansi turns off every “ANSI” code which might make the output less readable in a non ANSI ready environ-
ment -> like Windows or when redirecting the output to a file. However, since doing that also disables line jumping the
step runs will be printed twice to the screen (first print is the executing step, the second is the finished one). Without
colors that double print is confusing and can be turned off using --write-steps-once.

radish SomeFeature.feature --no-ansi
radish SomeFeature.feature --no-ansi --write-steps-once

The --no-line-jump command line option disables the “overwriting” of the yellow executing lines by the success
or failure lines. This is helpful when reviewing and debugging as it shows Steps first executing then finished. It also
allows for “print to console” style debugging to be used without ANSI codes destroying them.

radish SomeFeature.feature --no-line-jump

5.21 Run - dots output formatter

By default the gherkin output formatter is used. This formatter prints the Features in a gherkin style. In most of the
cases that’s the same as the input Feature File content. This gherkin output formatter is rather verbose: all Features,
Scenarios and Steps are printed.

You can use the dots output formatter with the -f dots command line option. Every passed Scenario will be printed as
a dot (.). Other possible symbols are:

• P for pending

• U for untested

• S for skipped

• F for failed

If a Scenario has failed, the failed Step will be printed in the summary in the end:

5.20. Run - Printing results to console 41

radish Documentation, Release 0.17.1

$ radish SomeFeature.feature -f dots

features/SomeFeature.feature: ..FFF..

Failures:
features/SomeFeature.feature: Subtract numbers wrongly

Then I expect the difference to be 3
AttributeError: 'int' object has no attribute 'step'

features/SomeFeature.feature: A Scenario Outline - row 0
Then I expect the sum to be 3
AssertionError: The expected sum 3 does not match actual sum 11

features/SomeFeature.feature: A Scenario Outline - row 1
Then I expect the sum to be 9
AssertionError: The expected sum 9 does not match actual sum 17

1 features (0 passed, 1 failed)
7 scenarios (4 passed, 3 failed)
20 steps (17 passed, 3 failed)
Run 1545585467 finished within a moment

5.22 Run - Writing out Scenario and Step ids

Radish provides the –write-ids command line option which can be used to enumerate Scenarios and Steps.

This can be useful for bug reporting.

1. Scenario: Apple Blender
1. Given I put couple of "apples" in a blender
2. When I switch the blender on
3. Then it should transform into "apple juice"

2. Scenario: Pear Blender
1. Given I put couple of "pears" in a blender
2. When I switch the blender on
3. Then it should transform into "pear juice"

It can also be useful when using the -s / --scenarios command line option since the Scenarios are numbered in the
run order.

42 Chapter 5. Command Line Usage

radish Documentation, Release 0.17.1

5.23 Run - Specifying Arbitrary User Data on the command-line

Radish allows you to specify arbitrary user data on the command-line as key=value pairs. You can access the user
data from your tests by accessing the world.config.user_data dictionary.

Note: All keys/values are treated as strings. If you specify the same key more than once, the last occurrence of the key
will replace previous occurrences.

radish SomeFeature.feature --user-data="my_key=1" --user-data="my_key2=my_value2" -u "my-
→˓key3=value3"

5.24 Show - Expand feature

Radish Precondition decorated Scenarios are powerful but can be confusing to read on the screen. For that Radish
provides --expand command line option to expand all the preconditions.

radish show SomeFeature.feature --expand

5.25 Help Screen

Use the --help or -h option to show the following help screen:

Usage:
radish show <features>

[--expand]
[--no-ansi]

radish <features>...
[-b=<basedir> | --basedir=<basedir>...]
[-e | --early-exit]
[--debug-steps]
[-t | --with-traceback]
[-m=<marker> | --marker=<marker>]
[-p=<profile> | --profile=<profile>]
[-d | --dry-run]
[-s=<scenarios> | --scenarios=<scenarios>]
[--shuffle]
[--tags=<tags>]
[--bdd-xml=<bddxml>]
[--with-coverage]
[--cover-packages=<cover_packages>]
[--cover-append]
[--cover-config-file=<cover_config_file>]
[--cover-branches]
[--cover-erase]
[--cover-min-percentage=<cover_min_percentage>]
[--cover-html=<cover_html_dir>]
[--cover-xml=<cover_xml_file>]
[--no-ansi]
[--no-line-jump]

(continues on next page)

5.23. Run - Specifying Arbitrary User Data on the command-line 43

radish Documentation, Release 0.17.1

(continued from previous page)

[--write-steps-once]
[--write-ids]
[--cucumber-json=<ccjson>]
[--junit-xml=<junitxml>]
[--debug-after-failure]
[--inspect-after-failure]
[--syslog]
[-u=<userdata> | --user-data=<userdata>...]

radish (-h | --help)
radish (-v | --version)

Arguments:
features feature files to run

Options:
-h --help show this screen
-v --version show version
-e --early-exit stop the run after the first failed step
--debug-steps debugs each step
-t --with-traceback show the Exception traceback when a step␣

→˓fails
-m=<marker> --marker=<marker> specify the marker for this run␣

→˓[default: time.time()]
-p=<profile> --profile=<profile> specify the profile which can be used in␣

→˓the step/hook implementation
-b=<basedir> --basedir=<basedir>... set base dir from where the step.py and␣

→˓terrain.py will be loaded. [default: $PWD/radish]
You can specify -b|--basedir multiple␣

→˓times. All files will be imported.
-d --dry-run make dry run for the given feature files
-s=<scenarios> --scenarios=<scenarios> only run the specified scenarios (comma␣

→˓separated list)
--shuffle shuffle run order of features and␣

→˓scenarios
--tags=<feature_tags> only run Scenarios with the given tags
--expand expand the feature file (all␣

→˓preconditions)
--bdd-xml=<bddxml> write BDD XML result file after run
--with-coverage enable code coverage
--cover-packages=<cover_packages> specify source code package
--cover-append append coverage data to previous␣

→˓collected data
--cover-config-file=<cover_config_file> specify coverage config file [default: .

→˓coveragerc]
--cover-branches include branch coverage in report
--cover-erase erase previously collected coverage data
--cover-min-percentage=<cover_min_percentage> fail if the given minimum coverage␣

→˓percentage is not reached
--cover-html=<cover_html_dir> specify a directory where to store HTML␣

→˓coverage report
--cover-xml=<cover_xml_file> specify a file where to store XML␣

→˓coverage report

(continues on next page)

44 Chapter 5. Command Line Usage

radish Documentation, Release 0.17.1

(continued from previous page)

--no-ansi print features without any ANSI␣
→˓sequences (like colors, line jump)

--no-line-jump print features without line jumps␣
→˓(overwriting steps)

--write-steps-once does not rewrite the steps (this option␣
→˓only makes sense in combination with the --no-ansi flag)

--write-ids write the feature, scenario and step id␣
→˓before the sentences

--cucumber-json=<ccjson> write cucumber json result file after run
--junit-xml=<junitxml> write JUnit XML result file after run
--debug-after-failure start python debugger after failure
--inspect-after-failure start python shell after failure
--syslog log all of your features, scenarios, and␣

→˓steps to the syslog
-u=<userdata> | --user-data=<userdata>... User data as 'key=value' pair. You can␣

→˓specify --user-data multiple times.

5.25. Help Screen 45

radish Documentation, Release 0.17.1

46 Chapter 5. Command Line Usage

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

47

	Introduction
	Why yet another python BDD tool?

	Installation
	System Wide Installation
	virtualenv Installation
	Install from source

	Quickstart
	Writing the first feature file
	Implementing Steps
	Implementation Terrain
	Run the feature file
	Run state result

	Tutorial
	Feature files
	Feature
	Scenario
	Scenario Outline
	Scenario Loop
	Scenario Precondition
	Background
	Steps
	Step Pattern
	Step Behave like
	Step Tables
	Step Text data
	Skipping a Step
	Tags
	Constants
	Terrain and Hooks
	Ordered Hooks
	Tagged Hooks

	Contexts
	World
	BDD XML Report
	Cucumber json Report
	Embedding data in cucumber report

	Testing Step Patterns
	Example

	Command Line Usage
	Run - Specify Feature files
	Run - Specify base directory
	Run - Early exit
	Run - Debug Steps
	Run - Show traceback on failure
	Run - Use custom marker to uniquely identify test run
	Run - Profile
	Run - Dry run
	Run - Specifying Scenarios by id
	Run - Shuffle Scenarios
	Run - Specify certain Features and/or Scenarios by tags
	Run - Work in progress
	Run - Write BDD XML result file
	Run - Code Coverage
	Run - Write Cucumber JSON file
	Run - Write JUnit XML file
	Run - Log all features, scenarios, and steps to syslog
	Run - Debug code after failure
	Run - Inspect code after failure
	Run - Printing results to console
	Run - dots output formatter
	Run - Writing out Scenario and Step ids
	Run - Specifying Arbitrary User Data on the command-line
	Show - Expand feature
	Help Screen

	Indices and tables

